Probabilistic Graphical Model Structure Learning: Application to Multi-Label Classification PhD defense

Maxime Gasse
Supervised by: Alex Aussem and Haytham Elghazel

LIRIS DM2L, UMR 5205 CNRS Université Lyon 1

13 January 2017

Thesis context

EU funding: ENIAC Joint Undertaking

- ► Integrated Solutions for Agile Manufacturing in High-mix Semiconductor Fabs
- 28 european partners leaded by STMicroelectronics

Thesis context

EU funding: ENIAC Joint Undertaking

- Integrated Solutions for Agile Manufacturing in High-mix Semiconductor Fabs
- 28 european partners leaded by STMicroelectronics

Bayesian network structure learning for process control in the semi-conductor industry.

Thesis context

EU funding: ENIAC Joint Undertaking

- Integrated Solutions for Agile Manufacturing in High-mix Semiconductor Fabs
- 28 european partners leaded by STMicroelectronics

Bayesian network structure learning for process control in the semi-conductor industry.

Research contributions in:

- ▶ BN structure learning (ECML 2012, ESWA 2014, IWBBIO 2014)
- Multi-label classification (ICML 2015, ECML 2016)
- ► Irreducible label factors (PGM 2016)

Outline

Probabilistic Graphical Models

What is a PGM? What is structure learning?

Multi-Label Classification

What is MLC? Why using PGMs?

Irreducible Label Factors

Theoretical results Experiments

Probabilistic Graphical Models

Graphical: represents a set of independence constraints.

X and Y independent

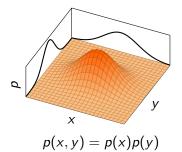
 \boldsymbol{X} and \boldsymbol{Y} dependent

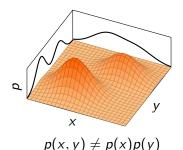
Graphical: represents a set of independence constraints.

X and Y independent

X and Y dependent

Probabilistic: encodes a probability distribution.





Independence model

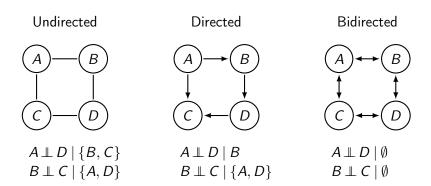
Conditional independence relations:

$$X \perp Y \mid Z \iff p(x,y|z) = p(x|z)p(y|z).$$

Independence model

Conditional independence relations:

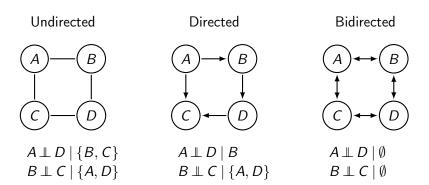
$$X \perp \!\!\!\perp Y \mid Z \iff p(x,y|z) = p(x|z)p(y|z).$$



Independence model

Conditional independence relations:

$$X \perp \!\!\!\perp Y \mid Z \iff p(x,y|z) = p(x|z)p(y|z).$$



Different expressive powers.

A large family

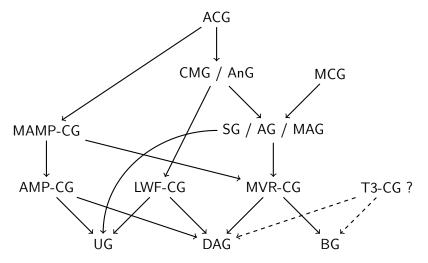
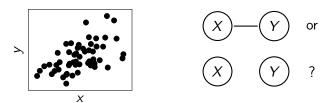


Figure: PGMs by order of inclusion (in terms of expressive power).

Learn a graph from a data set.

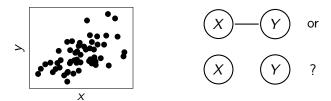
¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

Learn a graph from a data set.



¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

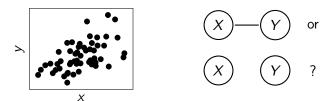
Learn a graph from a data set.



Why structure learning?

¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

Learn a graph from a data set.

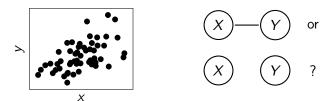


Why structure learning?

model selection: sparse/dense graph = simple/complex model;

¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

Learn a graph from a data set.

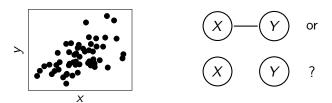


Why structure learning?

model selection: sparse/dense graph = simple/complex model;

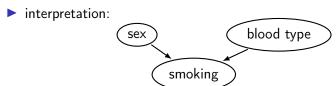
¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

Learn a graph from a data set.



Why structure learning?

model selection: sparse/dense graph = simple/complex model;



NP-hard in general¹.

¹D. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample Learning of Bayesian Networks is NP-Hard.

Constraint-based approach

Score-based / constraint-based:

Constraint-based approach

Score-based / constraint-based:

- ▶ extract constraints: $A \perp\!\!\!\perp C \mid B, A \not\perp\!\!\!\perp C \mid \emptyset \dots$;
- build a graph that respects these constraints.

Constraint-based approach

Score-based / constraint-based:

- ▶ extract constraints: $A \perp \!\!\!\perp C \mid B, A \not\perp \!\!\!\perp C \mid \emptyset \dots$;
- build a graph that respects these constraints.

Statistical tests, e.g. mutual information

$$I(X, Y \mid Z) \propto \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} n_{x,y,z} \log \frac{n_{x,y,z} n_z}{n_{x,z} n_{y,z}}.$$

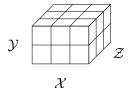
Constraint-based approach

Score-based / constraint-based:

- ▶ extract constraints: $A \perp \!\!\!\perp C \mid B, A \not\perp \!\!\!\perp C \mid \emptyset \dots$;
- build a graph that respects these constraints.

Statistical tests, e.g. mutual information

$$I(X, Y \mid Z) \propto \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} n_{x,y,z} \log \frac{n_{x,y,z} n_z}{n_{x,z} n_{y,z}}$$



Keep X, Y and Z as small as possible!

Constraint-based approach

Do we need to perform all tests?

²A. P. Dawid (1979). Conditional Independence in Statistical Theory.

Constraint-based approach

Do we need to perform all tests?

Conditional independence properties = deductive system

```
\begin{array}{lll} \textit{semi-graphoid}^2 \; (\textit{any p}) \\ X \mathrel{\bot\!\!\!\bot} Y \mid Z \iff Y \mathrel{\bot\!\!\!\bot} X \mid Z & \text{Symmetry} \\ X \mathrel{\bot\!\!\!\bot} Y \cup W \mid Z \implies X \mathrel{\bot\!\!\!\bot} Y \mid Z & \text{Decomposition} \\ X \mathrel{\bot\!\!\!\bot} Y \cup W \mid Z \implies X \mathrel{\bot\!\!\!\bot} Y \mid Z \cup W & \text{Weak Union} \\ X \mathrel{\bot\!\!\!\bot} Y \mid Z \wedge X \mathrel{\bot\!\!\!\bot} W \mid Z \cup Y \implies X \mathrel{\bot\!\!\!\bot} Y \cup W \mid Z & \text{Contraction} \end{array}
```

²A. P. Dawid (1979). Conditional Independence in Statistical Theory.

Constraint-based approach

Do we need to perform all tests?

Conditional independence properties = deductive system

²A. P. Dawid (1979). Conditional Independence in Statistical Theory.

Constraint-based approach

Do we need to perform all tests?

Conditional independence properties = deductive system

$$\begin{array}{lll} \textit{semi-graphoid}^2 \ (\text{any } \textit{p}) \\ \textbf{X} \perp \!\!\!\perp \textbf{Y} \mid \textbf{Z} \iff \textbf{Y} \perp \!\!\!\perp \textbf{X} \mid \textbf{Z} & \text{Symmetry} \\ \textbf{X} \perp \!\!\!\perp \textbf{Y} \cup \textbf{W} \mid \textbf{Z} \implies \textbf{X} \perp \!\!\!\perp \textbf{Y} \mid \textbf{Z} & \text{Decomposition} \\ \textbf{X} \perp \!\!\!\perp \textbf{Y} \cup \textbf{W} \mid \textbf{Z} \implies \textbf{X} \perp \!\!\!\perp \textbf{Y} \mid \textbf{Z} \cup \textbf{W} & \text{Weak Union} \\ \textbf{X} \perp \!\!\!\perp \textbf{Y} \mid \textbf{Z} \wedge \textbf{X} \perp \!\!\!\perp \textbf{W} \mid \textbf{Z} \cup \textbf{Y} \implies \textbf{X} \perp \!\!\!\perp \textbf{Y} \cup \textbf{W} \mid \textbf{Z} & \text{Contraction} \end{array}$$

graphoid (p > 0)

$$X \perp Y \mid Z \cup W \land X \perp W \mid Z \cup Y \implies X \perp Y \cup W \mid Z$$
 Intersection

compositional graphoid

$$X \perp Y \mid Z \land X \perp W \mid Z \implies X \perp Y \cup W \mid Z$$
 Composition

²A. P. Dawid (1979). Conditional Independence in Statistical Theory.

Multi-Label Classification

To which categories (plural) does an image belong?

To which categories (plural) does an image belong?

(desert, mountains, sea, sunset, trees)

To which categories (plural) does an image belong?

(desert, mountains, sea, sunset, trees)

What is MLC? Probabilistic framework

Binary multi-output supervised learning: $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \{0,1\}^m$,

 $\textbf{h}: \mathcal{X} \rightarrow \mathcal{Y}.$

Probabilistic framework

Binary multi-output supervised learning: $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \{0,1\}^m$,

$$h: \mathcal{X} \to \mathcal{Y}$$
.

Bayes-optimal prediction for $x \iff minimal expected loss$

$$\mathbf{h}^{\star}(\mathbf{x}) = \underset{\hat{\mathbf{y}}}{\mathsf{arg}} \min \sum_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}) \times L(\hat{\mathbf{y}}, \mathbf{y}).$$

Probabilistic framework

Binary multi-output supervised learning: $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \{0,1\}^m$,

$$h: \mathcal{X} \to \mathcal{Y}$$
.

Bayes-optimal prediction for $x \iff minimal expected loss$

$$\mathbf{h}^{\star}(\mathbf{x}) = \mathop{\arg\min}_{\hat{\mathbf{y}}} \sum_{\mathbf{y}} \rho(\mathbf{y} \mid \mathbf{x}) \times L(\hat{\mathbf{y}}, \mathbf{y}).$$

Very challenging:

- learn $p(y \mid x) \implies O(2^m)$ parameters;
- ▶ obtain $h^*(x) \implies O(4^m)$ computations.

Loss functions

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$$
, how far are $\hat{\mathbf{y}}$ and \mathbf{y} ?

- ► Hamming loss = $\frac{1}{m} \sum_{i=1}^{m} [\hat{y}_i \neq y_i]$
- ightharpoonup Zero-one loss = $[\hat{y} \neq y]$
- F-loss = $1 2 \times \hat{\mathbf{y}} \cdot \mathbf{y} / (\hat{\mathbf{y}} \cdot \hat{\mathbf{y}} + \mathbf{y} \cdot \mathbf{y})$

³K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier (2011).

Loss functions

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$$
, how far are $\hat{\mathbf{y}}$ and \mathbf{y} ?

- ► Hamming loss = $\frac{1}{m} \sum_{i=1}^{m} [\hat{y}_i \neq y_i]$
- ightharpoonup Zero-one loss = $[\hat{y} \neq y]$
- F-loss = $1 2 \times \hat{\mathbf{y}} \cdot \mathbf{y}/(\hat{\mathbf{y}} \cdot \hat{\mathbf{y}} + \mathbf{y} \cdot \mathbf{y})$

Affects MLC complexity:

	paramete	rs	inference		
L_H	$p(y_i \mathbf{x})$	O(m)	$arg \max_{\mathbf{y}} \prod_{i=1}^{m} p(y_i \mathbf{x})$	O(m)	
$L_{0/1}$	p(y x)	$O(2^{m})$	$arg \max_{\mathbf{y}} p(\mathbf{y} \mathbf{x})$	$O(4^m)$	
L_F	$p(y_i \times \mathbf{y} \cdot \mathbf{y} \mathbf{x})$	$O(m^2)$	GFM ³	$O(m^3)$	

³K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier (2011).

Loss functions

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$$
, how far are $\hat{\mathbf{y}}$ and \mathbf{y} ?

- ► Hamming loss = $\frac{1}{m} \sum_{i=1}^{m} [\hat{y}_i \neq y_i]$
- ightharpoonup Zero-one loss = $[\hat{\mathbf{y}} \neq \mathbf{y}]$
- F-loss = $1 2 \times \hat{\mathbf{y}} \cdot \mathbf{y}/(\hat{\mathbf{y}} \cdot \hat{\mathbf{y}} + \mathbf{y} \cdot \mathbf{y})$

Affects MLC complexity:

parameters			inference		
L_H	$p(y_i \mathbf{x})$	O(m)	$arg \max_{\mathbf{y}} \prod_{i=1}^{m} p(y_i \mathbf{x})$	O(m)	
$L_{0/1}$	$p(\mathbf{y} \mathbf{x})$	$O(2^{m})$	$arg \max_{\mathbf{y}} p(\mathbf{y} \mathbf{x})$	$O(4^{m})$	
L_F	$p(y_i \times \mathbf{y} \cdot \mathbf{y} \mathbf{x})$	$O(m^2)$	GFM ³	$O(m^3)$	

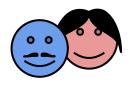
 \implies PGMs particularly useful under $L_{0/1}$.

³K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier (2011). An Exact Algorithm for F-Measure Maximization.

What is MLC?

Loss functions

A quick example: who is in the picture?



Alice	and	Roh
Allce	anu	DOD

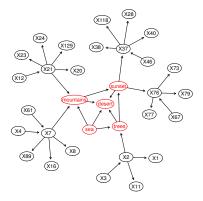
a	b	$p(a,b \mathbf{x})$	expected loss		
			L _H	$L_{0/1}$	
0	0	.02	.87	.99	
0	1	.11	.49	.88	
1	0	.12	.50	.89	
1	1	.76	.12	.24	

Alice or Bob?

a	b	$p(a,b \mathbf{x})$	$b \mathbf{x}$) expected loss $L_H L_{0/1}$	
0	0	.02	.53	.98
0	1	.46	.49	.54
1	0	.44	.51	.56
1	1	.08	.47	.92

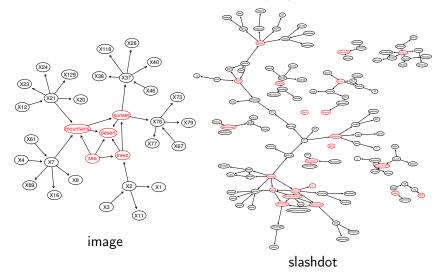
Graphical structure \iff constraints on p(y|x)

Graphical structure \iff constraints on p(y|x)

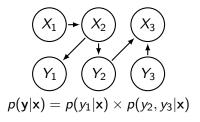


image

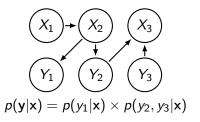
Graphical structure \iff constraints on p(y|x)



Disjoint factorization



Disjoint factorization



MLC under $L_{0/1}$:

$$\arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \arg_{\mathbf{y}} \left[\max_{y_1} p(y_1|\mathbf{x}) \times \max_{y_2,y_3} p(y_2,y_3|\mathbf{x}) \right]$$
$$O(2^3) \implies O(2^1 + 2^2)$$

Disjoint factorization

$$(X_1) + (X_2) (X_3)$$

$$(Y_1) (Y_2) (Y_3)$$

$$p(\mathbf{y}|\mathbf{x}) = p(y_1|\mathbf{x}) \times p(y_2, y_3|\mathbf{x})$$

MLC under $L_{0/1}$:

$$\arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \arg_{\mathbf{y}} \left[\max_{y_1} p(y_1|\mathbf{x}) \times \max_{y_2, y_3} p(y_2, y_3|\mathbf{x}) \right]$$
$$O(2^3) \implies O(2^1 + 2^2)$$

Simplifies parameter learning and inference.

Disjoint factorization

We want an irreducible disjoint factorization of p(y|x).

Definition

A label factor (LF) is a subset $\mathbf{Y}_F \subseteq \mathbf{Y}$ such that $\mathbf{Y}_F \perp \mathbf{Y} \setminus \mathbf{Y}_F \mid \mathbf{X}$. An irreducible label factor (ILF) is non-empty and contains no other non-empty LF.

⁴M. Gasse, A. Aussem, and H. Elghazel (2014). A hybrid algorithm for Bayesian network structure learning with application to multi-label learning.

⁵C. Bielza, G. Li, and P. Larrañaga (2011). Multi-dimensional classification with Bayesian networks.

⁶M. Gasse and A. Aussem (2016). Identifying the irreducible disjoint factors of a multivariate probability distribution.

Disjoint factorization

We want an irreducible disjoint factorization of p(y|x).

Definition

A label factor (LF) is a subset $\mathbf{Y}_F \subseteq \mathbf{Y}$ such that $\mathbf{Y}_F \perp \mathbf{Y} \setminus \mathbf{Y}_F \mid \mathbf{X}$. An irreducible label factor (ILF) is non-empty and contains no other non-empty LF.

Initial idea: extract ILFs from a BN structure⁴⁵.

⁴M. Gasse, A. Aussem, and H. Elghazel (2014). A hybrid algorithm for Bayesian network structure learning with application to multi-label learning.

⁵C. Bielza, G. Li, and P. Larrañaga (2011). Multi-dimensional classification with Bayesian networks.

⁶M. Gasse and A. Aussem (2016). Identifying the irreducible disjoint factors of a multivariate probability distribution.

Disjoint factorization

We want an irreducible disjoint factorization of p(y|x).

Definition

A label factor (LF) is a subset $\mathbf{Y}_F \subseteq \mathbf{Y}$ such that $\mathbf{Y}_F \perp \mathbf{Y} \setminus \mathbf{Y}_F \mid \mathbf{X}$. An irreducible label factor (ILF) is non-empty and contains no other non-empty LF.

Initial idea: extract ILFs from a BN structure⁴⁵.

BN structure learning is hard, can we just learn ILFs?

► Yes, much simpler⁶.

⁴M. Gasse, A. Aussem, and H. Elghazel (2014). A hybrid algorithm for Bayesian network structure learning with application to multi-label learning.

⁵C. Bielza, G. Li, and P. Larrañaga (2011). Multi-dimensional classification with Bayesian networks.

 $^{^6}$ M. Gasse and A. Aussem (2016). Identifying the irreducible disjoint factors of a multivariate probability distribution.

Irreducible Label Factors

Algebraic structure: if \mathbf{Y}_{F_i} and \mathbf{Y}_{F_i} are two LFs, then

- $ightharpoonup Y_{F_i} \cup Y_{F_i}$ is a LF;
- $ightharpoonup Y_{F_i} \cap Y_{F_i}$ is a LF;
- $ightharpoonup \mathbf{Y}_{F_i} \setminus \mathbf{Y}_{F_j}$ is a LF.

Algebraic structure: if \mathbf{Y}_{F_i} and \mathbf{Y}_{F_i} are two LFs, then

- $ightharpoonup Y_{F_i} \cup Y_{F_i}$ is a LF;
- $ightharpoonup Y_{F_i} \cap Y_{F_i}$ is a LF;
- $ightharpoonup \mathbf{Y}_{F_i} \setminus \mathbf{Y}_{F_i}$ is a LF.

 \implies the decomposition of **Y** into ILFs is unique.

Algebraic structure: if \mathbf{Y}_{F_i} and \mathbf{Y}_{F_i} are two LFs, then

- $ightharpoonup Y_{F_i} \cup Y_{F_i}$ is a LF;
- $ightharpoonup Y_{F_i} \cap Y_{F_i}$ is a LF;
- $ightharpoonup \mathbf{Y}_{F_i} \setminus \mathbf{Y}_{F_i}$ is a LF.
- \implies the decomposition of **Y** into ILFs is unique.

Constraint-based characterization:

- ▶ identifying all ILFs requires $O(m^2)$ pairwise CI tests;
- a practical procedure under the Composition assumption.

Quadratic testing

Theorem

```
< any strict total order of Y.
 1: \mathcal{G} \leftarrow (\mathbf{Y}, \emptyset) (empty graph)
 2: for all Y_i \in Y do
           \mathbf{Y}_{ind}^{i} \leftarrow \emptyset
 3:
           for all Y_i \in \{Y|Y > Y_i\} (processed in < order) do
 4:
                if Y_i \perp Y_i \mid X \cup \{Y \mid Y < Y_i\} \cup Y_{ind}^i then
 5:
                      \mathbf{Y}_{ind}^i \leftarrow \mathbf{Y}_{ind}^i \cup \{Y_i\}
 6:
 7:
                else
                      Insert a new edge (i, j) in G
 8:
        each connected component is an ILF.
```

Quadratic testing

Theorem

```
< any strict total order of Y.
 1: \mathcal{G} \leftarrow (\mathbf{Y}, \emptyset) (empty graph)
 2: for all Y_i \in Y do
           \mathbf{Y}_{\text{ind}}^i \leftarrow \emptyset
 3:
           for all Y_i \in \{Y | Y > Y_i\} (processed in < order) do
 4:
                 if Y_i \perp Y_i \mid X \cup \{Y \mid Y < Y_i\} \cup Y_{ind}^i then
 5:
                      \mathbf{Y}_{ind}^i \leftarrow \mathbf{Y}_{ind}^i \cup \{Y_i\}
 6:
  7:
                 else
                       Insert a new edge (i, j) in G
 8:
        each connected component is an ILF.
                                                 \mathbf{Y}_{ind}^{i}
              \{Y|Y < Y_i\} Y_i
```

Quadratic testing

Theorem

```
< any strict total order of Y.
 1: \mathcal{G} \leftarrow (\mathbf{Y}, \emptyset) (empty graph)
 2: for all Y_i \in Y do
           \mathbf{Y}_{ind}^{i} \leftarrow \emptyset
 3:
           for all Y_i \in \{Y|Y > Y_i\} (processed in < order) do
 4:
                if Y_i \perp Y_i \mid X \cup \{Y \mid Y < Y_i\} \cup Y_{ind}^i then
 5:
                      \mathbf{Y}_{ind}^i \leftarrow \mathbf{Y}_{ind}^i \cup \{Y_i\}
 6:
  7:
                else
                      Insert a new edge (i, j) in G
 8:
 ⇒ each connected component is an ILF.
```

Pros: no assumptions, $O(m^2)$ tests.

 $\{Y|Y < Y_i\}$ Y_i

Cons: cascading effect, high dimensional tests.

Assuming Composition

Theorem

 $\mathcal{G} = (\mathbf{Y}, \mathcal{E})$ an undirected graph, $Y_i - Y_j$ iff $Y_i \not \perp Y_j \mid \mathbf{X}$ $\underset{compo}{\Longrightarrow}$ each connected component is an ILF.

Assuming Composition

Theorem

 $\mathcal{G} = (\mathbf{Y}, \mathcal{E})$ an undirected graph, $Y_i - Y_j$ iff $Y_i \not \perp Y_j \mid \mathbf{X}$ $\underset{compo}{\Longrightarrow}$ each connected component is an ILF.

Moreover: $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \iff_{compo} Y_i \perp \!\!\! \perp Y_j \mid \mathbf{M}_i$ with \mathbf{M}_i a Markov boundary (minimum feature subset) of Y_i in \mathbf{X} .

Assuming Composition

Theorem

 $\mathcal{G} = (\mathbf{Y}, \mathcal{E})$ an undirected graph, $Y_i - Y_j$ iff $Y_i \not \perp Y_j \mid \mathbf{X}$ $\underset{compo}{\Longrightarrow}$ each connected component is an ILF.

Moreover: $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \underset{compo}{\Longleftrightarrow} Y_i \perp \!\!\! \perp Y_j \mid \mathbf{M}_i$

with M_i a Markov boundary (minimum feature subset) of Y_i in X.

Even better: $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \iff_{compo} Y_i \perp \!\!\! \perp Y_j \mid S_i$

with $s_i = p(y_i|\mathbf{x})$ (a.k.a. propensity score).

Assuming Composition

Theorem

 $\mathcal{G} = (\mathbf{Y}, \mathcal{E})$ an undirected graph, $Y_i - Y_j$ iff $Y_i \not \perp Y_j \mid \mathbf{X}$ $\underset{compo}{\Longrightarrow}$ each connected component is an ILF.

Moreover: $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \underset{compo}{\Longleftrightarrow} Y_i \perp \!\!\! \perp Y_j \mid \mathbf{M}_i$

with M_i a Markov boundary (minimum feature subset) of Y_i in X.

Even better: $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \iff_{compo} Y_i \perp \!\!\! \perp Y_j \mid S_i$ with $s_i = p(y_i \mid \mathbf{x})$ (a.k.a. propensity score).

Pros: $O(m^2)$ tests, low-dimensional.

Cons: Composition assumption.

Assuming Composition

Dependency of a whole implies dependency of some part,

$$A \not\perp \{B, C\} \mid D \implies A \not\perp B \mid D \text{ or } A \not\perp C \mid D.$$

Assuming Composition

Dependency of a whole implies dependency of some part,

$$A \not\perp \{B, C\} \mid D \implies A \not\perp B \mid D \text{ or } A \not\perp C \mid D.$$

Counter-example:
$$\mathbf{Y} = \{Y_1, Y_2, Y_3\}$$
, $\mathbf{X} = \emptyset$, XOR relationship $p(Y_1 = Y_2 \oplus Y_3) = \alpha$ $\{Y_1\} \not\perp \{Y_2, Y_3\}$, yet $Y_1 \perp Y_2$ and $Y_1 \perp Y_3$.

Assuming Composition

Dependency of a whole implies dependency of some part,

$$A \not\perp \{B, C\} \mid D \implies A \not\perp B \mid D \text{ or } A \not\perp C \mid D.$$

Counter-example:
$$\mathbf{Y} = \{Y_1, Y_2, Y_3\}$$
, $\mathbf{X} = \emptyset$, XOR relationship $p(Y_1 = Y_2 \oplus Y_3) = \alpha$ $\{Y_1\} \not\perp \{Y_2, Y_3\}$, yet $Y_1 \perp Y_2$ and $Y_1 \perp Y_3$.

Weak assumption, many approaches assume Composition:

- Linear models, multivariate Gaussian models;
- Greedy PGM structure learning algorithms (edge addition);
- Greedy FSS procedures (forward selection).

Assuming Composition

Dependency of a whole implies dependency of some part,

$$A \not\perp \{B, C\} \mid D \implies A \not\perp B \mid D \text{ or } A \not\perp C \mid D.$$

Counter-example:
$$\mathbf{Y} = \{Y_1, Y_2, Y_3\}$$
, $\mathbf{X} = \emptyset$, XOR relationship $p(Y_1 = Y_2 \oplus Y_3) = \alpha$ $\{Y_1\} \not\perp \{Y_2, Y_3\}$, yet $Y_1 \perp Y_2$ and $Y_1 \perp Y_3$.

Weak assumption, many approaches assume Composition:

- Linear models, multivariate Gaussian models;
- Greedy PGM structure learning algorithms (edge addition);
- Greedy FSS procedures (forward selection).

My favorite: XOR is the basis of cryptography.

Assuming Composition

Efficient procedure: ILF-Compo

- 1. for each label Y_i
 - learn $p(y_i \mid \mathbf{x})$ (probabilistic model);
 - ightharpoonup obtain the propensity score s_i of each observation;
 - make s_i discrete (quantile discretization);
- 2. for each pair (Y_i, Y_j)
 - ▶ measure $Y_i \perp \!\!\! \perp Y_j \mid S_i$ and $Y_i \perp \!\!\! \perp Y_j \mid S_j$ (statistical tests);
 - ▶ place $Y_i Y_j$ in \mathcal{G} accordingly;
- 3. read connected components in \mathcal{G} (breadth-first-search).

MLC decomposition under $L_{0/1}$:

$$\underset{\mathbf{y}}{\operatorname{arg max}} p(\mathbf{y}|\mathbf{x}) = \operatorname{arg}_{\mathbf{y}} \prod_{k=1}^{n} \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x}).$$

MLC decomposition under $L_{0/1}$:

$$\underset{\mathbf{y}}{\operatorname{arg max}} p(\mathbf{y}|\mathbf{x}) = \operatorname{arg}_{\mathbf{y}} \prod_{k=1}^{n} \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x}).$$

We compare three classification schemes

- ▶ **LP** (Label Powerset): $arg max_y p(y|x)$
 - ▶ 1 classifier, 2^m classes (much less in practice)

MLC decomposition under $L_{0/1}$:

$$\arg \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \arg_{\mathbf{y}} \prod_{k=1}^{n} \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x}).$$

We compare three classification schemes

- ▶ LP (Label Powerset): $arg max_y p(y|x)$
 - ▶ 1 classifier, 2^m classes (much less in practice)
- ▶ **F-LP** (ILF-Compo + LP): $\arg \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x})$ for each ILF
 - ightharpoonup n classifiers, 2^{m_k} classes each

MLC decomposition under $L_{0/1}$:

$$\arg \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \arg_{\mathbf{y}} \prod_{k=1}^{n} \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x}).$$

We compare three classification schemes

- ▶ LP (Label Powerset): $arg max_y p(y|x)$
 - ▶ 1 classifier, 2^m classes (much less in practice)
- ▶ **F-LP** (ILF-Compo + LP): arg max $_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k} | \mathbf{x})$ for each ILF
 - ightharpoonup n classifiers, 2^{m_k} classes each
- ▶ BR (Binary Relevance): arg max_{yi} $p(y_i|\mathbf{x})$ for each label
 - m binary classifiers

MLC decomposition under $L_{0/1}$:

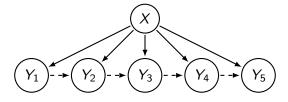
$$\arg \max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \arg_{\mathbf{y}} \prod_{k=1}^{n} \max_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k}|\mathbf{x}).$$

We compare three classification schemes

- ▶ LP (Label Powerset): $arg max_y p(y|x)$
 - ▶ 1 classifier, 2^m classes (much less in practice)
- ▶ **F-LP** (ILF-Compo + LP): arg max $_{\mathbf{y}_{F_k}} p(\mathbf{y}_{F_k} | \mathbf{x})$ for each ILF
 - ightharpoonup n classifiers, 2^{m_k} classes each
- **BR** (Binary Relevance): $arg max_{v_i} p(y_i|\mathbf{x})$ for each label
 - m binary classifiers

Same base learner.

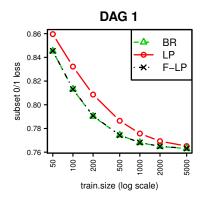
Synthetic toy problem



Generic toy DAG (Bayesian network).

We build 5 distinct factorizations:

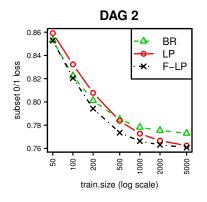
- ▶ DAG 1: $\{Y_1\}$, $\{Y_2\}$, $\{Y_3\}$, $\{Y_4\}$, $\{Y_5\}$;
- ▶ DAG 2: $\{Y_1, Y_2\}, \{Y_3, Y_4\}, \{Y_5\};$
- ▶ DAG 3: $\{Y_1, Y_2, Y_3\}, \{Y_4, Y_5\};$
- ▶ DAG 4: $\{Y_1, Y_2, Y_3, Y_4\}, \{Y_5\};$
- ▶ DAG 5: $\{Y_1, Y_2, Y_3, Y_4, Y_5\}$.



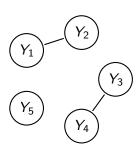
 Y_1 Y_2 Y_3 Y_5 Y_4

Test set $L_{0/1}$ over 1000 runs.

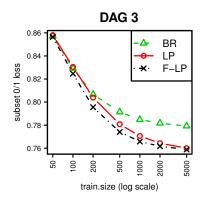
Decomposition graph.



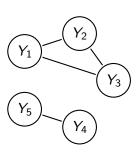
Test set $L_{0/1}$ over 1000 runs.



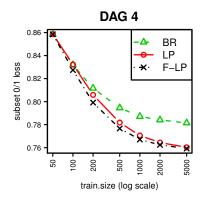
Decomposition graph.



Test set $L_{0/1}$ over 1000 runs.



Decomposition graph.

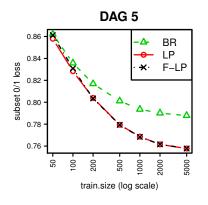


 Y_1 Y_2 Y_3 Y_5 Y_4

Test set $L_{0/1}$ over 1000 runs.

Decomposition graph.

Synthetic toy problem



 Y_1 Y_2 Y_3 Y_5 Y_4

Test set $L_{0/1}$ over 1000 runs.

Decomposition graph.

Real-world data sets

8 standard multi-label data sets⁷

dataset	domain	$ \mathcal{D} $	X	Y	
emotions	music	593	72	6	
image	images	2000	135	5	
scene	images	2407	294	6	
yeast	biology	2417	103	14	
slashdot	text	3782	1079	22	
genbase	biology	662	1186	27	
medical	text	978	1449	45	
enron	text	1702	1001	53	

 $^{^7} http://mulan.sourceforge.net/datasets-mlc.html\\$

Real-world data sets

8 standard multi-label data sets⁷

dataset	domain	$ \mathcal{D} $	X	Y
emotions	music	593	72	6
image	images	2000	135	5
scene	images	2407	294	6
yeast	biology	2417	103	14
slashdot	text	3782	1079	22
genbase	biology	662	1186	27
medical	text	978	1449	45
enron	text	1702	1001	53

7 additional MLC approaches:

► CC, PCC, MCC, ECC, RAKEL, HOMER, LEAD

 $^{^7} http://mulan.sourceforge.net/datasets-mlc.html\\$

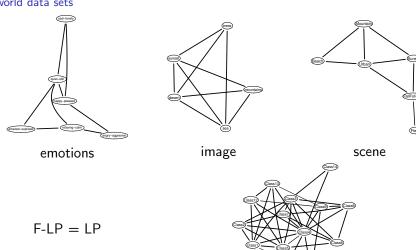
Real-world data sets

Mean $L_{0/1}$ over 5x2 cv (lower is better):

method	emotions	image	scene	yeast	slashdot	genbase	medical	enron
LP	66.2	53.7	31.5	75.1	55.0	3.8	33.0	83.8
F-LP	66.2	53.7	31.8	75.1	59.1	3.4	32.2	85.3
BR	73.6	76.4	49.0	85.5	66.2	3.4	35.9	89.3
СС	71.6	57.9	37.0	80.7	62.0	3.3	32.7	88.0
ECC	70.6	59.7	37.7	79.8	60.3	3.1	31.7	86.9
MCC	67.9	57.3	37.2	79.8	61.9	3.4	33.4	88.1
PCC	70.7	59.7	39.8	79.6	-	-	-	-
RAkEL	69.3	57.8	39.4	81.6	65.3	3.2	35.6	89.0
HOMER	71.7	68.4	49.4	86.9	64.9	3.4	37.9	89.7
LEAD	76.2	70.2	49.9	85.4	69.2	3.8	37.4	91.8

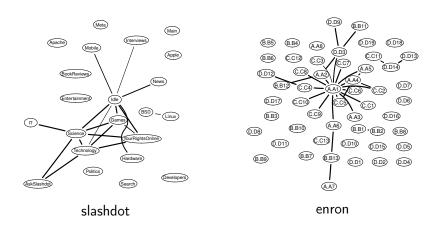
win / tie / loss =
$$2 / 3 / 3$$

Real-world data sets



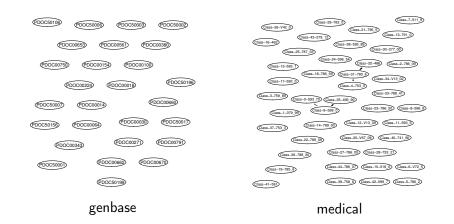
yeast

Real-world data sets



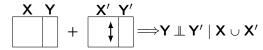
F-LP < LP

Real-world data sets

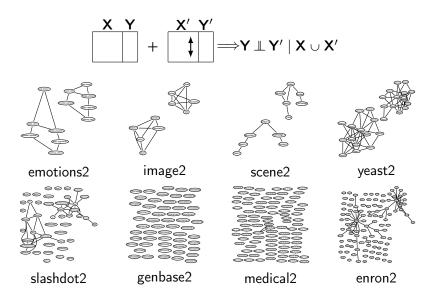


F-LP > LP

Twin data sets



Twin data sets



Twin data sets

Mean $L_{0/1}$ over 5x2 cv (lower is better):

method	emotions2	image2	scene2	yeast2	slashdot2	genbase2	medical2	enron2
LP	94.9	87.6	62.8	97.5	90.3	33.7	86.6	99.3
F-LP	91.8	82.0	58.6	95.0	83.9	6.8	62.4	98.4
BR	94.7	93.7	79.0	98.0	89.9	6.8	67.0	99.1
СС	95.1	83.9	66.9	96.5	86.5	7.1	64.4	99.0
ECC	93.6	84.8	66.5	97.0	86.1	7.2	64.4	98.7
MCC	93.6	85.6	67.9	96.4	86.6	7.1	64.4	98.9
PCC	93.1	85.9	71.0	-	-	-	-	-
RAkEL	93.7	89.7	72.0	97.8	89.3	6.8	67.2	99.2
HOMER	95.5	91.8	79.9	98.8	97.0	27.0	82.1	99.6
LEAD	95.9	93.0	80.5	98.1	91.3	8.9	65.5	99.6

win / tie / loss = 10 / 0 / 0

Thesis in-between PGMs and MLC.

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

• factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- F-GFM useful for F-measure maximization (ECML 2016)

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- ► F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

▶ a disjoint factorization of p(y|x) is not guaranteed

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- ► F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

- ▶ a disjoint factorization of p(y|x) is not guaranteed
- multiple testing (imagine two ILFs of size 100)

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

- ▶ a disjoint factorization of p(y|x) is not guaranteed
- multiple testing (imagine two ILFs of size 100)
- experimental results could be further improved

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

- ▶ a disjoint factorization of p(y|x) is not guaranteed
- multiple testing (imagine two ILFs of size 100)
- experimental results could be further improved

Other contributions:

► H2PC for BN structure learning (ECML 2012, ESWA 2014)

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- ► F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

- ▶ a disjoint factorization of p(y|x) is not guaranteed
- multiple testing (imagine two ILFs of size 100)
- experimental results could be further improved

Other contributions:

- ► H2PC for BN structure learning (ECML 2012, ESWA 2014)
- some conjectures on Chain Graphs

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Thesis in-between PGMs and MLC.

Main contribution: ILFs

- factorizing p(y|x) requires $O(m^2)$ CI tests (PGM 2016)
- ► F-LP useful for 0/1 loss minimization (ICML 2015)
- ► F-GFM useful for F-measure maximization (ECML 2016)

Limitations:

- ▶ a disjoint factorization of p(y|x) is not guaranteed
- multiple testing (imagine two ILFs of size 100)
- experimental results could be further improved

Other contributions:

- ► H2PC for BN structure learning (ECML 2012, ESWA 2014)
- some conjectures on Chain Graphs
- ► SPNlearn⁸ factorization optimal under Composition

⁸H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New Deep Architecture.

Score-based approach

- score-based structures usually more consistent
- $ightharpoonup O(m^2)$ CI characterization $\implies O(m^2)$ search strategy?

⁹M. Studeny (2005). Probabilistic Conditional Independence Structures.

Score-based approach

- score-based structures usually more consistent
- ▶ $O(m^2)$ CI characterization $\implies O(m^2)$ search strategy?

Representation learning

- factorization of p(y|x) is not guaranteed
- learn z = f(y) such that p(z|x) factorizes

Score-based approach

- score-based structures usually more consistent
- ▶ $O(m^2)$ CI characterization $\implies O(m^2)$ search strategy?

Representation learning

- factorization of p(y|x) is not guaranteed
- ▶ learn z = f(y) such that p(z|x) factorizes

Decomposable models

- CI characterization still open problem⁹
- non-disjoint factorization generalizes ILFs

Score-based approach

- score-based structures usually more consistent
- ▶ $O(m^2)$ CI characterization $\implies O(m^2)$ search strategy?

Representation learning

- factorization of p(y|x) is not guaranteed
- ▶ learn z = f(y) such that p(z|x) factorizes

Decomposable models

- ► CI characterization still open problem⁹
- non-disjoint factorization generalizes ILFs

Post-doc: deep learning for image inpainting (CREATIS)

⁹M. Studeny (2005). Probabilistic Conditional Independence Structures.

Probabilistic Graphical Model Structure Learning: Application to Multi-Label Classification PhD defense

Maxime Gasse
Supervised by: Alex Aussem and Haytham Elghazel

Thank you!

Proof: propensity score

$$s_i = p(y_i \mid \mathbf{x})$$
 captures all - and only - information from \mathbf{X} about Y_i :
 $Y_i \perp \mathbf{X} \mid S_i$ and $Y_i \perp S_i \mid \mathbf{X}$.

 $Y_i \perp Y_j \mid S_i$ (Composition with $Y_i \perp \mathbf{X} \mid S_i$) $\Rightarrow Y_i \perp Y_j \mid S_i \cup \mathbf{X}$ (Weak Union)
 $\Rightarrow Y_i \perp Y_j \mid S_i \cup \mathbf{X}$ (Contraction with $Y_i \perp S_i \mid \mathbf{X}$)
 $\Rightarrow Y_i \perp Y_j \mid \mathbf{X}$ (Decomposition)

 $Y_i \perp Y_j \mid S_i \Longrightarrow_{compo} Y_i \perp Y_j \mid \mathbf{X}$

The demonstration $Y_i \perp \!\!\! \perp Y_j \mid \mathbf{X} \Longrightarrow_{compo} Y_i \perp \!\!\! \perp Y_j \mid S_i$ is the same.

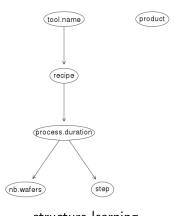
Experiments Varying α

Mean $L_{0/1}$ over 5x2 cv (lower is better):

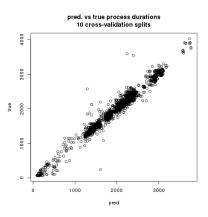
method	emotions	image	scene	yeast	slashdot	genbase	medical	enron
LP	67.6	53.5	31.8	75.2	56.0	3.5	32.4	83.9
F-LP ($\alpha = 10^{-1}$)	67.6	53.5	31.8	75.2	56.0	3.6	32.4	83.9
F-LP $(\alpha = 10^{-2})$	67.6	53.5	31.8	75.2	56.0	3.4	32.8	83.9
F-LP ($\alpha = 10^{-4}$)	67.6	53.5	31.8	75.2	56.5	3.7	33.5	85.2
F-LP $(\alpha = 10^{-8})$	68.4	53.5	31.8	75.2	61.7	3.2	35.1	86.8
F-LP $(\alpha = 10^{-16})$	73.7	57.3	32.6	75.1	66.0	2.9	35.8	88.3
BR	73.9	76.0	48.7	85.8	66.6	2.9	35.8	89.2

STMicroelectronics

Use case: process duration



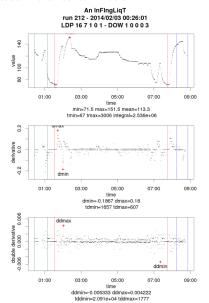
structure learning

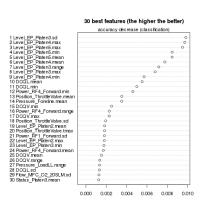


regression

STMicroelectronics

Use case: wafer contamination





feature extraction