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EU funding: ENIAC Joint Undertaking

» Integrated Solutions for Agile Manufacturing in High-mix
Semiconductor Fabs

> 28 european partners leaded by STMicroelectronics

Bayesian network structure learning for process control in the
semi-conductor industry.

Research contributions in:
» BN structure learning (ECML 2012, ESWA 2014, IWBBIO 2014)
» Multi-label classification (ICML 2015, ECML 2016)
» Irreducible label factors (PGM 2016)
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What is a PGM?

Graphical: represents a set of independence constraints.

ONNO CO—O

X and Y independent X and Y dependent

Probabilistic: encodes a probability distribution.
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What is a PGM?

Independence model

Conditional independence relations:

XLY|Z < p(x,ylz) = p(x|z)p(y|2).
Undirected Directed Bidirected
00 9 o
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ALD|{B,C} ALD|B ALD|®
B 1 C|{A, D} Bl C|{A D} BLCI|®

Different expressive powers.



What is a PGM?

A large family
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Figure: PGMs by order of inclusion (in terms of expressive power).
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What is structure learning?

Learn a graph from a data set.
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Why structure learning?

» model selection: sparse/dense graph = simple/complex model;
P interpretation:

N

—

NP-hard in general®.

ID. M. Chickering, D. Heckerman, and C. Meek (2004). Large-Sample
Learning of Bayesian Networks is NP-Hard.
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What is structure learning?

Constraint-based approach

Seore-based / constraint-based:
» extract constraints: ALC|B, AYC|0...;
» build a graph that respects these constraints.

Statistical tests, e.g. mutual information

XY 1Z) oS53 neyzlog "”Z”Z.

n
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Keep X, Y and Z as small as possible!
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What is structure learning?

Constraint-based approach

Do we need to perform all tests 7
Conditional independence properties = deductive system

semi-graphoid? (any p)

X1Y|Z << YLX|Z Symmetry
XLYUW|Z = XL1Y|Z Decomposition
XLYOW|Z = XLY|ZuW Weak Union
XLY|ZAXLW]|ZuY = XLYUW|Z Contraction

graphoid (p > 0)
XLY|ZOWAXLW|ZUY = XLYUW|Z Intersection

compositional graphoid
XLY|ZAXLW|Z = XLYUW|Z Composition

2A. P. Dawid (1979). Conditional Independence in Statistical Theory.
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What is MLC?

Probabilistic framework

Binary multi-output supervised learning: x € R, y € {0,1}™,

h: X =Y.

Bayes-optimal prediction for x <= minimal expected loss

h*(x) = arg min > ply [ %) x L(9,y).

Very challenging:
» learn p(y | x) = O(2™) parameters;
» obtain h*(x) = O(4™) computations.
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An Exact Algorithm for F-Measure Maximization.
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What is MLC?

Loss functions
L:YxY — Rxg, how far are y and y ?

» Hamming loss = % S # il
» Zero-one loss = [§ # y]
» Floss=1-2xy-y/(y-Y+y-y)

Affects MLC complexity:

parameters inference
Ly p(yi|x) O(m)  argmax, [17 p(yilx)  O(m)
Loj1 p(y[x) o(2m) arg max, p(y|x) o(4™m)
Le | p(yi xy-ylx) O(m?) GFM3 o(m?)

== PGMs particularly useful under Lg;.

3K. Dembczynski, W. Waegeman, W. Cheng, and E. Hiillermeijer (2011).
An Exact Algorithm for F-Measure Maximization.



What is MLC?

Loss functions

A quick example: who is in the picture?

2 b | p(a blx) eprectedL loss

(J (J H O 1

0 O .02 .87 .99

0 1 11 49 .88

1 0 12 .50 .89

1 1 .76 12 .24

Alice and Bob.
expected loss
b b

a p(a, b|x) Ly LO/l

0 O .02 .53 .98

0 1 46 49 .54

1 0 44 .51 .56

1 1 .08 47 .92

Alice or Bob?
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Why using PGMs?

Graphical structure <= constraints on p(y|x)
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p(ylx) = p(y1lx) x p(y2, y3|x)

MLC under Lg;:

arg max p(y[x) = arg, [max p(y1|x) x max p(y2,y3|x)}
y Y1 ¥2,Y3

0(2*) = 0(2' +2?)

Simplifies parameter learning and inference.
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Why using PGMs?
Disjoint factorization
We want an irreducible disjoint factorization of p(y|x).

Definition

A label factor (LF) is a subset Y € Y such that YE LY \ YF | X.
An irreducible label factor (ILF) is non-empty and contains no other
non-empty LF.

Initial idea: extract ILFs from a BN structure*®.

BN structure learning is hard, can we just learn ILFs?

» Yes, much simpler®.

*M. Gasse, A. Aussem, and H. Elghazel (2014). A hybrid algorithm for
Bayesian network structure learning with application to multi-label learning.

5C. Bielza, G. Li, and P. Larrafiaga (2011). Multi-dimensional classification
with Bayesian networks.

®M. Gasse and A. Aussem (2016). ldentifying the irreducible disjoint factors
of a multivariate probability distribution.
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Theoretical results

Algebraic structure: if Y, and Y, are two LFs, then
> YrUYE isa LF;
> YrnYE isa LF;
> Yr \ Yfg isa LF.

— the decomposition of Y into ILFs is unique.
Constraint-based characterization:

» identifying all ILFs requires O(m?) pairwise Cl tests;

> a practical procedure under the Composition assumption.



Theoretical results
Quadratic testing

Theorem
< any strict total order of Y.
1: G < (Y,0) (empty graph)
2: for all Y; e Y do
Y/I:nd — (Z)
for all Y; € {Y|Y > Y} (processed in < order) do
if Y LY; | Xu{Y|Y < Y;}uY! , then
Yl"nd — Y;'ndu{yj}
else
Insert a new edge (i,j) in G
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= each connected component is an ILF.
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Theoretical results
Quadratic testing

Theorem
< any strict total order of Y.

1: G < (Y,0) (empty graph)

2: for all Y; e Y do

3: Y/I:nd — 0

4: for all Y; € {Y|Y > Y} (processed in < order) do
5: if Y LY; | Xu{Y|Y < Y;}uY! , then

6: Yl’:nd — Y;:ndu{ YJ}

7: else

8: Insert a new edge (i,j) in G

= each connected component is an ILF.

BENEN ENNEN EEEE

{YIY <vi} i Yig Yj

Pros: no assumptions, O(m?) tests.
Cons: cascading effect, high dimensional tests.
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Theoretical results

Assuming Composition

Theorem
G = (Y,€&) an undirected graph, Y; — Y; iff Y; L Y; | X

= each connected component is an ILF.
compo

Moreover: Y; L Y; | X <= Y; LY;|M;

compo
with M; a Markov boundary (minimum feature subset) of Y; in X.

Even better: Y; LYj | X < Y;LY;|S;

compo

with s; = p(y;|x) (a.k.a. propensity score).

Pros: O(m?) tests, low-dimensional.
Cons: Composition assumption.
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Theoretical results

Assuming Composition

Dependency of a whole implies dependency of some part,

A¥{B,C}Y|D = AYB|DorAYC|D.

Counter-example: Y = {Y1, Y2, Y3}, X = (), XOR relationship
p(Yi=Y2®Y3)=a
{Yl} ,Il/_{Yg, Y3}, yet YiLYsand Y1 L Ys.

Weak assumption, many approaches assume Composition:

» Linear models, multivariate Gaussian models;
» Greedy PGM structure learning algorithms (edge addition);
» Greedy FSS procedures (forward selection).

My favorite: XOR is the basis of cryptography.



Theoretical results

Assuming Composition

Efficient procedure: ILF-Compo
1. for each label Y;

» learn p(y; | x) (probabilistic model);
» obtain the propensity score s; of each observation;
> make s; discrete (quantile discretization);

2. for each pair (Y;, Y))
> measure Y; L Y;|S;and Y; LY |S; (statistical tests);
» place Y; — Y; in G accordingly;

3. read connected components in G (breadth-first-search).
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Experiments

MLC decomposition under Lg;:

arg max p(y[x) = arg, H max p(yF[x).
k=1 "k
We compare three classification schemes

> LP (Label Powerset): argmax, p(y|x)
> 1 classifier, 2™ classes (much less in practice)

» F-LP (ILF-Compo + LP): arg max,, (y,:k]x) for each ILF

» n classifiers, 2™ classes each

> BR (Binary Relevance): arg max,, p(y;|x) for each label
» m binary classifiers

Same base learner.



Experiments
Synthetic toy problem
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Generic toy DAG (Bayesian network).

We build 5 distinct factorizations:

> DAG 1: {1}, {Y2}, {Ya}, {Ya}, {5}
> DAG 2: {Yla Y2}a {Y3> Y4}> {Y5};

> DAG 3: {Yl, Yo, Y3}, {Y4, Y5};

> DAG 4 {Y1,Ya, Ys, Ya), {Ys}:

» DAG b5: {Yl, Y2, Y3, Y4, Y5}



Experiments
Synthetic toy problem

DAG 1
0.86 {0 & BR
0.84 _K\ —e— LP @
\ O - X F-LP @

0.82 \“\

[¢]
oso] O\, AN @
x\ o
0.78 ~ 'k\o
\\‘: E

0.76

subset 0/1 loss

50 -
5000 450

100 -
200
500
1000 A

train.size (log scale

Test set Ly/; over 1000 runs. Decomposition graph.



Experiments
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Experiments
Synthetic toy problem
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Experiments
Synthetic toy problem
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Test set Ly/; over 1000 runs. Decomposition graph.



Experiments
Synthetic toy problem
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Experiments

Real-world data sets

8 standard multi-label data sets’
dataset  domain  |D| IX| Y]
emotions music 5903 72 6
image images 2000 135 5
scene images 2407 294 6
yeast biology 2417 103 14
slashdot  text 3782 1079 22
genbase  biology 662 1186 27
medical  text 978 1449 45
enron text 1702 1001 53

http://mulan.sourceforge.net/datasets-mlc.html



Experiments

Real-world data sets

8 standard multi-label data sets’

dataset  domain  |D| IX| Y]
emotions music 593 72 6
image images 2000 135 5
scene images 2407 294 6
yeast biology 2417 103 14
slashdot  text 3782 1079 22
genbase  biology 662 1186 27
medical  text 978 1449 45
enron text 1702 1001 53

7 additional MLC approaches:

» CC, PCC, MCC, ECC, RAKEL, HOMER, LEAD

http://mulan.sourceforge.net/datasets-mlc.html



Experiments

Real-world data sets

Mean Lg/; over 5x2 cv (lower is better):

method ‘emotions image scene yeast slashdot genbase medical

enron

LP 66.2 53.7 31,5 75.1 55.0 3.8 33.0 83.8
F-LP 66.2 53.7 318 75.1 59.1 3.4 322 853
BR 73.6 76.4 49.0 855 66.2 3.4 359 893
CcC 71.6 579 37.0 80.7 62.0 33 327  88.0
ECC 70.6 59.7 37.7 79.8 603 3.1 31.7 86.9
MCC 67.9 573 372 79.8 619 3.4 334 881
PCC 70.7 59.7 39.8 79.6 - - - -
RAKEL 69.3 57.8 394 816 653 3.2 356 89.0
HOMER 71.7 68.4 494 869 649 3.4 379 89.7
LEAD 76.2 70.2 49.9 854 69.2 3.8 374 918

win / tie /loss=2/3 /3
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Experiments

Real-world data sets
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Experiments

Twin data sets

Mean Lg/; over 5x2 cv (lower is better):

method ‘emotionsZ image2 scene2 yeast2 slashdot2 genbase2 medical2 enron2

LP 94.9 87.6 62.8 975 90.3 33.7 86.6 99.3
F-LP 91.8 82.0 58.6 95.0 83.9 6.8 62.4 98.4
BR 94.7 93.7 79.0 98.0 89.9 6.8 67.0 99.1
CcC 95.1 83.9 66.9 96.5 86.5 7.1 64.4 99.0
ECC 93.6 84.8 66.5 97.0 86.1 7.2 64.4 98.7
MCC 93.6 85.6 679 96.4 86.6 7.1 64.4 98.9
PCC 931 85.9 71.0 - - - - -
RAKEL 93.7 89.7 720 97.8 89.3 6.8 67.2 99.2
HOMER 95.5 91.8 799 9838 97.0 27.0 82.1 99.6
LEAD 95.9 93.0 80.5 98.1 91.3 8.9 65.5 99.6

win / tie /loss=10/0/0
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» F-LP useful for 0/1 loss minimization (ICML 2015)
» F-GFM useful for F-measure maximization (ECML 2016)

Limitations:
» a disjoint factorization of p(y|x) is not guaranteed
» multiple testing (imagine two ILFs of size 100)

> experimental results could be further improved

Other contributions:
» H2PC for BN structure learning (ECML 2012, ESWA 2014)
» some conjectures on Chain Graphs

» SPNlearn® factorization optimal under Composition

8H. Poon and P. M. Domingos (2011). Sum-Product Networks: A New
Deep Architecture.
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Perspectives

Score-based approach
» score-based structures usually more consistent
» O(m?) Cl characterization = O(m?) search strategy?

Representation learning
» factorization of p(y|x) is not guaranteed

» learn z = f(y) such that p(z|x) factorizes

Decomposable models
» Cl characterization still open problem?®

» non-disjoint factorization generalizes ILFs

Post-doc: deep learning for image inpainting (CREATIS)

®M. Studeny (2005). Probabilistic Conditional Independence Structures.



Probabilistic Graphical Model Structure Learning:

Application to Multi-Label Classification
PhD defense

Maxime Gasse
Supervised by: Alex Aussem and Haytham Elghazel
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Proof: propensity score

si = p(yi | x)
captures all - and only - information from X about Y;:

Y,JLX|5, and Y,JL5,|X

YilY;|Si

= YiLY;uX]|S (Composition with Y; L X | S;)
= YiLY;|SuX (Weak Union)
= Y;LY;,5|X (Contraction with Y; L S; | X)
= Y;LlY;|X (Decomposition)

Y,LY;|S = YiLY;|X
compo

The demonstration Y; L Y; | X = Y; L Yj|S; is the same.

compo



Experiments
Varying «

Mean Lg/; over 5x2 cv (lower is better):

method ‘emotions image scene yeast slashdot genbase medical enron

LP | 67.6 53.5 31.8 752 56.0 35 324 839

F-LP (o =1071) 67.6 53.5 31.8 752 56.0 3.6 324 839
F-LP (o =1072) 67.6 53.5 31.8 752 56.0 34 328 83.9

F-LP (« =10"%)| 67.6 53.5 31.8 752 565 3.7 335 852
F-LP (« =10"%) | 684 535 31.8 752 617 3.2 351 86.8
F-LP (a=10"16)| 73.7 573 326 75.1 66.0 2.9 358 883

BR ‘ 73.9 76.0 48.7 858 66.6 2.9 358 89.2




STMicroelectronics

Use case: process duration
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STMicroelectronics

Use case: wafer contamination
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